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METHOD

The finite difference solution of Laplace’s
Equation gives an approximation to the
exact potential function at a finite number
of mesh or nodal points within the given
boundaries of the transmission line conduc-
tors. If a suitable interpolation formula is
used to define an approximate, but contin-
uous potential distribution throughout the
region, the associated field energy may be
calculated. By the Dirichlet principle, or the
principle of minimum potential energy, it is
known that this energy is greater than the
energy E associated with the exact potential
function V. It follows that the calculated
capacitance per unit length, which is pro-
portional to the field energy, is greater than
the exact capacitance per unit length C.

The characteristic impedance Z, of a
TEM mode transmission line is given by
L 1

C 2C

where L is the inductance per unit length
and v is the velocity of propagation. A lower
bound on the characteristic impedance has
thus been obtained.

The dual problem is defined by inter-
changing electric conductors (short circuit)
and magnetic conductors (open circuits) and
substituting the reciprocal of the dielectric
constant K,.
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An exact dual potential function V’ can be

shown to be related to function V of the
original problem by the transformation

v v’

* oz ay ’

¢ =

Hence

6K, v\ 2 AN
E Tff,e; a‘)+(a7) Wy
€ BV’ 2 GV' 2
Keffﬁ(a—yﬁ(rx Wy

2
= E

|

where E’ is the energy in the dual problem
and R is the region between the transmission
line conductors. Also
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where Q is the charge on unit length of the
transmission line conductor enclosed by
curve /. Thus the exact dual capacitance per
unit length is given by

o = 2 2B e
Vo'? Q2 C
Hence
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where €M8.8542 X107 farad per meter is
the permittivity of free space.

If an approximate, but continuous dual
potential distribution is found, the associ-
ated field energy is greater than the energy
E’ associated with the exact potential func-
tion V", It follows that the calculated dual
capacitance is greater than the exact dual
capacitance C’. Hence by (2), a lower bound
on the exact capacitance C and thus an up-
per bound on the characteristic impedance
Zy have been obtained.

This procedure is analogous to calculat-
ing the inductance L of the transmission
line with relative permeability K, equal to
1/K., but its real significance lies in the
construction of an approximate, but solenoi-
dal electric field vector, which is to be dis-
cussed in a forthcoming paper [4].

The approximate, but continuous dual
potential distribution may be obtained
directly from the finite difference solution
of the original problem with the aid of the
transformation (1). This latter method for
an upper bound eliminates the need to set
up and solve the dual problem, and it was
incorporated in the Laplace finite difference
computer program described by H. E.
Green [3] together with the above method
for a lower bound. The following examples
illustrate typical results which have been
obtained.

REesuULTS

a) Square Coaxial Line (Side Length
Ratio=2).

b) Strip Transmission ILine (%/;=0.8;
v/p=23.2), see Fig. 1.

Problem qult)ﬁr %f. Nodes Characteristic Impedance (Ohms)
in the Kinite
Number | pifference Net Lower Bound Upper Bound M:;g ﬁfogg? " | Exact Impedan ce*
a 441 36.6942 36.9524 36.8229 36.81132
a 1682 36.7636 36.8656 36.8146
a 6561 36.7921 36.8316 36.8119
a Extrapolated
to infinity 36.8026 36.8192 36.8109
b 363 74.4665 77.8513 76.1213 75.9079
b 1365 75.1702 76.8896 76.0202
b 5289 75.5271 76.3939 75.9580
b Extrapolated
to infinity 75.6628 76.2072 75.9340

* The exact impedance was obtained from a conformal transformation.

w

Fig. 1. Strip transmission line.
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CoNCLUSION

A method of extending a Laplace finite
difference solution to obtain an upper and a
lower bound on the characteristic impedance
of TEM mode transmission lines has been
demonstrated.

C. T. CarsoN

G. K. CAMBRELL

Weapons Research Establishment
Salisbury, South Australia
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Correction to “General Four-Reso-
nator Filters at Microwave
Frequencies”

R. M. Kurzrok, author of the above,! has
called the following to the attention of the
Editor.

On page 296, the first sentence below (4)
should have read:

“Letting |x%,| =2.75 and using (4), a
theoretical valley insertion loss of 34.4 dB
is obtained.”

R. M. Kurzrok
RCA Commun. Systems Lab.
New York, N.Y,

Manuscript received July 8, 1966.

1R, M. Kurzrok, IEEE Trans. on Microwave
Theory and Techniques (Correspondence), vol. MTT-
14, pp. 295-296, June 1966.

Addendum to Analysis and Exact
Synthesis of Cascaded Commen-
surate Transmission-Line
C-Section All-Pass

Networks

In a previous publication {1] a method
for the exact synthesis of cascaded com-
mensurate transmission-line C-section all-
pass networks was presented. In the general
case of 7 sections, the synthesis procedure
requires the solution of a set of # simultan-
eous linear equations before extracting the
even-mode impedances of the coupled lines

Manuscript received May 26, 1966.
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of the cascaded C-sections. Further study
has since shown that it is unnecessary to
solve, or even ascertain, the aforementioned
set of simultaneous equations; that the
essential information for the synthesis pro-
cedure is contained in the coefficients of the
phase function, itself. The phase function 8
for cascaded C-section all-pass networks is
given by [1]

B =24 Fus) =2 < [Nals) + Dul=9)], (1)

where the symbol Z stands for “the angle
of”; the subscript # is the number of cas-
caded sections; and N,(s) and D,(s) are the
numerator and denominator, respectively,
of the reflection coefficient of the correspond-
ing transformer prototype, terminated in a
1-ohm resistor. It can be shown that

Nu(s) + Du(—s5) = Fa(s) = 2(4 - C), (2)

where 4 and C are the even and odd poly-
nomials, respectively, that constitute the 4
and C components of the overall ABCD-
matrix for the transformer prototype. Hence,

A = Even part of Fr(s) = F,(s) 3)

C = — Odd part of Fr(s) = — Fols). @
In the case where the transformer prototype
is terminated not in a 1-ohm load but in an
open circuit, the input impedance is given by

Zia(5) |ryme = A(9)/C(s) = = Fol(s) /Fo(s). (3)

Contributors

Thus, the even-mode impedances of the
cascaded C-sections may be extracted from
(5) directly, without resorting to the solu-
tion of the aforementioned simultaneous
equations. The realization of the reactance
function of (5) in a cascade of commensurate
transmission lines terminated in an open
circuit is guaranteed by a theorem of
Richards [2].

To illustrate the use of (5), we use the
phase function Fi(s) which was previously
presented [1] in the design of a 3-section 90°
phase shifter.

Fy(s) =1 —1.8s
+ 1.572565% — 0.41763s8, 6)
By (5), one finds directly

1 4 1.57256s%
Zin(5) |y 18 Foamesse
The line impedances may be extracted by
the procedure of Richards [2] yielding the
same values as previously found [1].

Also in this correspondence, we wish to
emphasize that the restrictions on the coef-
ficients of the phase function (see (38) and
(39) of [1]) are necessary but not sufficient
(except for the case n=1) to realize cas-
caded C-sections with even-mode imped-
ances greater than 1. For two sections neces-
sary and sufficient conditions have been
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found to be
0<B; <2
For 0 < By £1, B,?unrestricted
For 1<B, 52 ®
B —-1<B2< -

Bi—1

For more than two sections sufficient condi-
tions have not been determined. Neverthe-
less, in most cases of practical interest, it is
believed that the synthesis method will
yield even-mode impedances greater than
one. In this respect the situation is anal-
ogous to that encountered in the synthesis
of directional couplers from prescribed inser-
tion loss functions. There, also, it is not
known beforehand which insertion loss
functions will realize even-mode impedances
greater than one.
Epwarp G. CrisTAL
Stanford Research Institute
Menlo Park, Calif.
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