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METHOD

The finite difference solution of Laplace’s

Equation gives an approximation to the

exact potential function at a finite number

of mesh or nodal points within the given

boundaries of the transmission line conduc-
tors, If a suitable interpolation formula is
used to define an approximate, but contin-
uous potential distribution throughout the
region, the associated field energy may be

calculated. By the Dirichlet principle, or the
principle of minimum potential energy, it is

known that this energy is greater than the

energy E associated with the exact potential

function V. It follows that the calculated

capacitance per unit length, which is pro-
portional to the field energy, is greater than

the exact capacitance per unit length C.
The characteristic impedance 20 of a

TEM mode transmission line is given by

where L is the inductance per unit length
and u is the velocity of propagation. A lower

bound on the characteristic impedance has

thus been obtained.
The dual problem is defined by inter-

changing electric conductors (short circuit)

and magnetic conductors (open circuits) and
substituting the reciprocal of the dielectric
constant K..

An exact dual potential function V’ can be

shown to be related to function V of the
original problem by the transformation

= E’

where E9 is the energy in the dual problem
and R is the region between the transmission
line conductors. Also

where Q is the charge on unit length of the

transmission line conductor enclosed by
curve L Thus the exact dual capacitance per

unit length is given by

~f _ 2E’_ 2E’02 _ ‘“2 ,
v,” Q’ C

Hence
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where eOM8.8542X 10–12 farad per meter is
the permittivity of free space.

If an approximate, but continuous dual
potential distribution is found, the associ-

ated field energy is greater than the energy
E’ associated with the exact potential func-
tion V’. It follows that the calculated dual
capacitance is greater than the exact dual
capacitance C’. Hence by (2), a lower bound
on the exact capacitance C and thus an up-

per bound on the characteristic impedance
Zo have been obtained.

This procedure is analogous to calculat-

ing the inductance L of the transmission

line with relative permeability Km equal to
1/K,, but its real significance lies in the

construction of an approximate, but solenoi-
dal electric field vector, which is to be dis-

cussed in a forthcoming paper [4].
The approximate, but continuous dual

potential distribution may be obtained

directly from the finite difference solution
of the original problem with the aid of the
transformation (l). This latter method for

an upper bound eliminates the need to set

up and solve the dual problem, and it was
incorporated in the Laplace finite difference
computer program described by H. E.

Green [3] together with the above method
for a lower bound. The following examples
illustrate typical results which have been

obtained.

RESULTS

a) Square Coaxial Line (Side Length

Ratio = 2).

b) Strip Transmission Line (W/b= 0.8;

‘/S, =s.2), see Fig. 1.

Problem
Number

a
a
a
a

:
b
b

Number of Nodes
Characteristic Impedance (Ohms)

in the Finite
Difference Net LWer Bound I upper Bound I ‘~~&,~

441 36.6942
1682

36.9524 36.8229
36.7636

6561
36.8656 36. S146

36.7921 36.8316 36.8119
Extrapolated

to infinity 36.8026 36. S192 36.8109

74.4665 77.8513 76.1213
1% 75.1702
5289

76. 8S96 76.0202
75.5271 76.3939 75.9580

Extrapolated
to infinity 75.6628 76.2072 75.9340

Exact Impedan c~

36.81132

75.9079

* The exact impedance was obtained from a conformal transformation.
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Fig. 1. Strip transmission line.

CONCLUSION

A method of extending a Laplace finite

difference solution to obtain an upper and a
lower bound on the characteristic impedance

of TEM mode transmission lines has been
demonstrated.
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REFERENCES

[ 1]

[2]

[3]

[4]

[5]

H. E. Green, ‘Numerical solution of some im-
portant transmission time problems, ” IEEE
Trans. on Miwowaw Theo~y and Techniques, VOL
MTT-13, pp. 676-692, September 1965.
M. V. Schneider, “Computation of impedance and
attenuation of TEM-lines by finite difference
methods, ” IEEE Tram. on Microwave Theo~y and
Techwigues, vol. MTT.13, pp. 793–800, November. ..-
19b5.
H. E. Green, “The numerical calculation of the
characteristic impedance, propagation constant
and the equivalent circuits of obstacles in T.E.M.
mode transmission lines, ” Weapons Research
Establ., Rept. PAD14, Salisbury, South Australia.
G. K. Cambrell, Weapons Research Establ., Rept.
in preparation, Salisbury. South Australia.
R. Courant and D. Hibert, Methods of Mathe-
matical Physics. New York: Interscience, 1953,
ch. 4.

[6] R. Southwell, Relaxation Methods in Theoretical
Phys{cs. ~~ew York: Oxford, 1946, ch. 5.

Correction to “General Four-Reso-

nator Filters at Microwave

Frequencies”

R. M. Kurzrok, author of the above,l has
called the following to the attention of the

Editor,

On page 296, the first sentence below (4)
should have read:

“Letting ] xv ] = 2.75 and using (4), a

theoretical valley insertion loss of 34.4 dB
is obtained. ”

R. M. KURZROK
RCA Commun. Systems Lab.

New York, N.Y.

Manuscript received July 8, 1966.
1 R. M. Kurzrok, IEEE Trans. on Microwave

Theory and Techvzi@bes (Cos’respondence), vol. MTT.
14, pp. 295-296, June 1966.

Addendum to Analysis and Exact

Synthesis of Cascaded Commen-

surate Transmission-Line

C-Section All-Pass

Networks

In a previous publication [1] a method
for the exact synthesis of cascaded com-
mensurate transmission-line C-section all-
pass networks was presented. In the general
case of n sections, the synthesis procedure
requires the solution of a set of n simukan-
eous linear equations before extracting the
even-mode impedances of the coupled lines

Manuscript received May 26, 1966.
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of the cascaded C-sections. Further study
has since shown that it is unnecessary to

solve, or even ascertain, the aforementioned
set of simultaneous equations; that the
essential information for the synthesis pro-

cedure is contained in the coefficients of the
phase function, itself. The phase function B

for cascaded C-section all-pass networks is
given by [1]

p = 2 z F.(s) = 2 z [N.(s) + Dn(–s)l, (1)

where the symbol Z stands for “the angle
of”; the subscript n is the number of cas-
caded sections; and N.(s) and D.(s) are the
numerator and denominator, respectively,
of the reflection coefficient of the correspond-
ing transformer prototype, terminated in a

l-ohm resistor. It can be shown that

N.(s) + Dn(–s) = F.($) = 2(’4 – c), (2)

where A and C are the even and odd poly-
nomials, respectively, that constitute the A

and C components of the overall ABCD-
matrix for the transformer prototype. Hence,

A ~ Even part of F.(s) = F.(s) (3)

C A -- Odd part of F.(s) = – F,(s). (4)

In the case where the transformer prototype
is terminated not in a l-ohm load but in an

open circuit, the input impedance is given by

Zin(,) l~~,.~ = A (.s)/C(.S) = – ~.(s) /~o(s). (~)

Thus, the even-mode impedances of the

cascaded C-sections may be extracted from
(5) directly, without resorting to the solu-

tion of the aforementioned simultaneous
equations. The realization of the reactance
function of (5) in a cascade of commensurate

transmission lines terminated in an open
circuit is guaranteed by a theorem of

Richards [2].
To illustrate the use of (5), we use the

phase function F3(s) which was previously

presented [1] in the design of a 3-section 90°

phase shifter.

F8(s) = 1 – 1.8s

+ 1.57256sZ – 0.41763s8. (6)

By (5), one finds directly

1 + 1.57256s’
-?in(S) lRL=m =

1.8s + 0.41763s8
. (7)

The line impedances may be extracted by

the procedure of Richards [2] yielding the
same values as previously found [1].

Also in this correspondence, we wish to

emphasize that the restrictions on the coef-
ficients of the phase function (see (38) and

(39) of [1]) are necessary but not sufficient
(except for the case n= 1) to realize cas-

caded C-sections with even-m ode imped-
ances greater than 1. For two sections neces-
sary and sufficient conditions have been

found to be

O< B1S2 )

For 0< BI <1, Bzz unrestricted

For 15Bl~2 (8)

1
Bl–l<B2~<—

B1–i”

For more than two sections su ftlcient condi-

tions have not been determined. Neverthe-
less, in most cases of practical interest, it is

believed that the synthesis method will
yield even-mode impedances greater than
one. In this respect the situation is anal-

ogous to that encountered in the synthesis
of directional couplers from prescribed inser-
tion loss functions. There, a [SO, it is not
known beforehand which insertion loss

functions will realize even-mode impedances

m-eater than one.

[1]

[2]

EDWARD G. CRtSTAL
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